摘要

Purpose The present study aims to develop a vortex method capable for solving the complex vortical flows past the moving/deforming bodies. Design/methodology/approach To achieve such a goal, some innovative work is conducted on the basis of vortex-in-cell (VIC) method that uses the improved semi-Lagrangian scheme. The penalization technique is incorporated with the VIC, which makes the complex boundaries of moving/deforming bodies readily treated. Iterative algorithm is further proposed for the penalization and used to solve the Poisson equation, which enhances the vorticity solution accuracy at the body boundary. Findings The developed method is used to simulate some distinct flows of different boundaries and features: the impulsively started circular cylinder flow represents the one-way coupling; the falling circular cylinder flow and ellipse leaf flow both represent the two-way coupling of moving boundary; the fish-like body flow represents the two-way fluid-structure interaction of deforming boundary. The vortical physics of the above flows are well revealed, and the developed method is proven capable in dealing with the complex fluid-structure interaction problems. Originality/value The penalization technique is incorporated with the semi-Lagrangian VIC method, which makes the complex boundaries of moving/deforming bodies readily treated. An iterative algorithm is further proposed for the penalization and used to solve the Poisson equation, which enhances the vorticity solution accuracy at the body boundary. The complex vortical physics of the moving/deforming body flows are well revealed, and the propulsive mechanism of fish-like swimmer is well illustrated with the present method.

全文