摘要

We perform molecular dynamics simulations of supercritical water (SCW) with a wide range of densities along a near critical isotherm using the simple point charge extended (SPC/E) pair potential in order to study the entropy and the solvation shell structure around a central water molecule. It is shown that both the translational and orientational two-particle correlation entropy terms can serve as the metrics of the translational-orientational structural orders in water and it is revealed that the translational structural order is very sensitive to the density variation in the gas-like and liquid-like region, while the orientational structural order is much more dependent upon compression in the medium-density SCW region. The comparison of the magnitudes of the full thermodynamic excess entropy and two-particle correlation entropy confirms the recent findings that the many-body terms other than two-body ones also present significant and non-neglectable contributions to the full excess entropy for the highly anomalous fluids like water. The analysis of entropy terms as a function of intermolecular distance and the orientational distribution functions as well as the three-dimensional spatial distribution functions indicate that the structural order occurs only in a much more diffused first solvation shell due to the elongated hydrogen bonds under supercritical conditions. It is revealed that no obvious second or higher neighbor shells occur in SCW, in contrast with the feature of normal liquid water that the anomalous decrease of translational order upon compression occurs mainly in the second shell.

全文