摘要

This paper presents a rectangular, anisotropic nanolaminated CoNiFe core that possesses a magnetically hard axis in the long geometric axis direction. Previously, we have developed nanolaminated cores comprising tens to hundreds of layers of 300-1000 nm thick metallic alloys (i.e. Ni80Fe20 or Co44Ni37Fe19) based on sequential electrodeposition, demonstrating suppressed eddy-current losses at MHz frequencies. In this work, magnetic anisotropy was induced to the nanolaminated CoNiFe cores by applying an external magnetic field (50-100 mT) during CoNiFe film electrodeposition. The fabricated cores comprised tens to hundreds of layers of 500-1000 nm thick CoNiFe laminations that have the hard-axis magnetic property. Packaged in a 22-turn solenoid test inductor, the anisotropic core showed 10% increased effective permeability and 25% reduced core power losses at MHz operation frequency, compared to an isotropic core of the identical geometry. Operating the anisotropic nanolaminated CoNiFe core in a step-down dc-dc converter (15 V input to 5 V output) demonstrated 81% converter efficiency at a switching frequency of 1.1 MHz and output power of 6.5 W. A solenoid microinductor with microfabricated windings integrated with the anisotropic nanolaminated CoNiFe core was fabricated, demonstrating a constant inductance of 600 nH up to 10 MHz and peak quality factor exceeding 20 at 4 MHz. The performance of the microinductor with the anisotropic nanolaminated CoNiFe core is compared with other previously reported microinductors.

  • 出版日期2015-11-25