A Novel Deep Embedding Network for Building Shape Recognition

作者:Tian, Shu*; Zhang, Ye; Zhang, Junping; Su, Nan
来源:IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2127-2131.
DOI:10.1109/LGRS.2017.2753821

摘要

Building shape, as a key structured element, plays a significant role in various urban remote sensing applications. However, because of high complexity and intraclass variations between building structures, the capability of building shape description and recognition becomes limited or even impoverished. In this letter, a novel deep embedding network is proposed for building shape recognition, which combines the strength of the unsupervised feature learning of convolutional neural networks (CNNs) and a novel triplet loss. Specifically, we take advantage of the strong discriminative power of CNNs to learn an efficient building shape representation for shape recognition. With this deep embedding network, the high-dimensional image space can be mapped into a low-dimensional feature space, and the deep features can effectively reduce the intraclass variations while increasing the interclass variation between different building shape images. Afterward, the derived deep features are exploited for the process of building shape recognition. This method consists of two stages. In the first stage, for standard building shape image queries stored in the shape primitives library and the building shape data set, two sets of deep features are extracted with the deep embedding network. In the second stage, we formulate the shape recognition task into a feature matching problem and the final building shape recognition results can be achieved by set-to-set feature matching method. Experiments on the VHR-10 and UCML data sets demonstrate the effectiveness and precision of the proposed method.