摘要

Interaural time differences (ITDs) are a major cue for localizing low-frequency (<1.5 kHz) sounds. Sensitivity to this cue first occurs in the medial superior olive (MSO), which is thought to perform a coincidence analysis on its monaural inputs. Extracellular single-neuron recordings in MSO are difficult to obtain because (1) MSO action potentials are small and (2) a large field potential locked to the stimulus waveform hampers spike isolation. Consequently, only a limited number of studies report MSO data, and even in these studies data are limited in the variety of stimuli used, in the number of neurons studied, and in spike isolation. More high-quality data are needed to better understand the mechanisms underlying neuronal ITD-sensitivity.
We circumvented these difficulties by recording from the axons of MSO neurons in the lateral lemniscus (LL) of the chinchilla, a species with pronounced low-frequency sensitivity. Employing sharp glass electrodes we successfully recorded from neurons with ITD sensitivity: the location, response properties, latency, and spike shape were consistent with an MSO axonal origin. The main difficulty encountered was mechanical stability. We obtained responses to binaural beats and dichotic noise bursts to characterize the best delay versus characteristic frequency distribution, and compared the data to recordings we obtained in the inferior colliculus (IC). In contrast to most reports in other rodents, many best delays were close to zero ITD, both in MSO and IC, with a majority of the neurons recorded in the LL firing maximally within the presumed ethological ITD range.

  • 出版日期2013-10-30