摘要

We simulated the pattern of activity of a strato-volcano by using a cellular automaton model where magma is allowed to ascend to the surface through self-organized crack networks. Magma rises toward the surface by filling connected paths of fractures until the magma%26apos;s density is less than that of surrounding rocks. If magma enters a region with negative or neutral buoyancy, it cools and solidifies; as a result, the local density profile is modified, and magmatic dikes are formed. We simulated the temporal evolution of high-density pathways of dikes that magma may eventually utilize to reach the surface. We showed that if a shallow neutral-negative buoyancy zone is restored after eruptions, due to, for example, piecemeal or chaotic collapses, a characteristic timescale appears in the inter-event repose time distribution. Such characteristic repose time represents the average time that magma takes to form a high-density pathway through the less dense rock layer, and it may give a hint to predict possible eruptive scenarios. Even if the model includes many simplifying assumptions in the definition of magma-rock interaction, the results obtained from simulations are consistent with the eruptive behavior of the Mt. Somma-Vesuvius volcano for the 1631-1944 period.

  • 出版日期2013-6