A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks

作者:Sweeney Yann*; Kotaleski Jeanette Hellgren; Hennig Matthias H
来源:PLoS Computational Biology, 2015, 11(7): e1004389.
DOI:10.1371/journal.pcbi.1004389

摘要

Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive homeo-stasis in comparison with canonical non-diffusive homeostasis in cortical networks. We find that both forms of homeostasis provide a robust mechanism for maintaining stable activity following perturbations. However, the resulting networks differ, with diffusive homeostasis maintaining substantial heterogeneity in activity levels of individual neurons, a feature disrupted in networks with non-diffusive homeostasis. This results in networks capable of representing input heterogeneity, and linearly responding over a broader range of inputs than those undergoing non-diffusive homeostasis. We further show that these properties are preserved when homeostatic and Hebbian plasticity are combined. These results suggest a mechanism for dynamically maintaining neural heterogeneity, and expose computational advantages of non-local homeostatic processes.

  • 出版日期2015-7