摘要

Discrete dislocation dynamics simulations in three dimensions have been used to examine the role of dislocation multiplication and mobility on the plasticity in small samples under uniaxial compression. To account for the effects of the free surfaces a boundary-element method, with a superposition technique, was employed. Cross-slip motion of the dislocation was also included, and found to be critical to the modeling of the dislocation behavior. To compare directly with recent experiments on micropillars, simulation samples at small volumes were created by cutting them from bulk three-dimensional simulations, leading to a range of initial dislocation structures. Application was made to single-crystal nickel samples. Comparison of the simulation results and the experiments are excellent, finding essentially identical behavior. Examination of details of the dislocation mechanism illuminates many features unique to small samples and points directly to the importance of both the surface forces and cross-slip in understanding small-scale plasticity.

  • 出版日期2010-3