摘要

The inclusion of geosynthetic reinforcement in the piled embankment can help transfer loads to the piles and reduce total and differential settlements. In order to select the appropriate reinforcement material, the reasonable calculation of the deflection and tension is very important. Current design methods usually do not represent the true three-dimensional (3D) nature of the displacements, strains, and stresses of the geosynthetics, and the resulting error may be large and cannot be neglected in some cases. In this study, two-and three-dimensional finite element analyses were conducted to identify the behavior of geosynthetic reinforcement and investigate the accuracy of the assumptions made in the current design methods. Based on the numerical results, a new 3D deflected shape of the geosynthetic reinforcement was suggested, and then the corresponding governing equation was derived and solved based on the membrane theory. To investigate the validity of the proposed method, the predicted maximum deflection, deflection shape, and the developed tensile force of the geosynthetics have been compared with the experimental data collected from the literatures and finite element analysis results.