摘要

The task of geolocating targets from airborne video is required for many applications in surveillance, law enforcement, reconnaissance, etc. The usual approaches to target geolocation involve terrain data, single target tracking, gimbal control of camera heads, altimeters, etc. The main goal of this research is to eliminate those requirements and still develop an accurate, efficient, and robust vision-based method for geolocation that can be carried out for multiple targets simultaneously. In that sense, our main contributions to the state-of-the-art in geolocation are fourfold: 1) to eliminate the requirement for gimbal control of the cameras or any particular path planning control for the UAV; 2) to perform instaneous geolocation of multiple targets; 3) to eliminate the requirements for geo-referenced terrain database (elevation maps) or for an altimeter that provides the UAV's and target's altitudes; and 4) to use one single camera while still maintaining good overall accuracy. In order to achieve that, the only requirements for our proposed method are: that the intrinsic parameters of the camera be known; that the on board camera be equipped with global positioning system (GPS) and inertial measurement unit (IMU); and that the height of the vehicle can be calculated using feature points extracted from the ground surrounding the image of the targets. To satisfy the first two requirements, we developed and tested a robust calibration procedure that can estimate not only the intrinsic parameters of the camera, but also the IMU-camera parameters (also know in the robotic circles as the hand-eye calibration). The last requirement was addressed using a pseudo-stereo vision technique that maximizes the distance between stereo pairs (baseline) while keeping large the number of common feature points extracted by the algorithm. The result is a method that can reach approximately 25 m of accuracy for an UAV flying at 155 m away from the target. Such performance is demonstrated by computer simulation, in-scale data using a model city, and real airborne video with ground truth.

  • 出版日期2011-4

全文