Identification of E2F1 as an Important Transcription Factor for the Regulation of Tapasin Expression

作者:Bukur Juergen; Herrmann Felix; Handke Diana; Recktenwald Christian; Seliger Barbara*
来源:JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285(40): 30419-30426.
DOI:10.1074/jbc.M109.094284

摘要

HER-2/neu overexpression in tumor cells caused abnormalities of MHC class I surface expression due to impaired expression of components of the antigen-processing machinery (APM) including the low molecular weight proteins, the transporter associated with antigen processing (TAP), and the chaperone tapasin, whereas the expression of MHC class I heavy chain as well as beta(2)-microglobulin was only marginally affected. This oncogene-mediated deficient APM component expression could be reverted by interferon-gamma treatment, suggesting a deregulation rather than structural alterations as underlying molecular mechanisms. To determine the level of regulation, the transcriptional activity of APM components was analyzed in HER-2/neu(-) and HER-2/neu(+) cells. All major APM components were transcriptionally down-regulated in HER-2/neu(+) when compared with HER-2/neu(-) cells, which was accompanied by a reduced binding of RNA polymerase II to the APM promoters. Site-directed mutagenesis of the p300- and E2F-binding sites in the APM promoters did not reconstitute the oncogene-mediated decreased transcription rate with the exception of tapasin, which was restored in HER-2/neu(+) cells to levels of wild type tapasin promoter activity in HER-2/neu(-) fibroblasts. The E2F-directed control of tapasin expression was further confirmed by chromatin immunoprecipitation analyses showing that E2F1 and p300 bind to the tapasin and APM promoters in both cell lines. Moreover, siRNA-mediated silencing of E2F1 was associated with an increased tapasin expression, whereas transient overexpression of E2F1 launch a reduced tapasin transcription, suggesting that E2F1 is an essential transcription factor for tapasin.