Low Cycle Fatigue Evaluation of Pipe Bends With Local Wall Thinning Considering Multi-Axial Stress State

作者:Urabe Yoshio; Takahashi Koji*; Abe Hisanori
来源:Journal of Pressure Vessel Technology-Transactions of the ASME, 2015, 137(4): 041404.
DOI:10.1115/1.4028889

摘要

Low cycle fatigue tests and finite element (FEM) analysis were conducted using 100A pipe bend specimens made of STPT410 carbon steel with and without local wall thinning local wall thinning was machined on the inside of the elbow and was prepared at extrados, crown, and intrados. The parameters of the wall thinning were same (the wall thinning ratio = 0.5, the wall thinning angle = 180 deg, and the wall thinning length = 100 mm) in the all test cases. The pipe bend specimens were subjected to the prescribed cyclic in-plane bending displacement with constant internal pressure of 0-12 MPa. Also, low cycle fatigue tests using sound pipe bend specimens were carried out for comparison. According to the test results, low cycle fatigue strength of wall thinned pipe bend specimens was not so different, regardless of location of wall thinning. Low cycle fatigue strength of the pipe bend specimens was beneath the best fit fatigue curve and its reason can be explained quantitatively by a proposed cumulated damage rule introducing ductility exhaustion considering multi-axial stress state. The validity of the new proposed cumulative damage rule was also confirmed by the another sample analysis using other reference data obtained by pre-overloaded in-plane cyclic bending tests.

  • 出版日期2015-8