摘要

Swallowing depends on physiological variables that have a decisive influence on the swallowing capacity and on the tracheal stress distribution. Prosthetic implantation modifies these values and the overall performance of the trachea. The objective of this work was to develop a decision support system based on experimental, numerical and statistical approaches, with clinical verification, to help the thoracic surgeon in deciding the position and appropriate dimensions of a Dumon prosthesis for a specific patient in an optimal time and with sufficient robustness. A code for mesh adaptation to any tracheal geometry was implemented and used to develop a robust experimental design, based on the Taguchi%26apos;s method and the analysis of variance. This design was able to establish the main swallowing influencing factors. The equations to fit the stress and the vertical displacement distributions were obtained. The resulting fitted values were compared to those calculated directly by the finite element method (FEM). Finally, a checking and clinical validation of the statistical study were made, by studying two cases of real patients. The vertical displacements and principal stress distribution obtained for the specific tracheal model were in agreement with those calculated by FE simulations with a maximum absolute error of 1.2mm and 0.17MPa, respectively. It was concluded that the resulting decision support tool provides a fast, accurate and simple tool for the thoracic surgeon to predict the stress state of the trachea and the reduction in the ability to swallow after implantation. Thus, it will help them in taking decisions during pre-operative planning of tracheal interventions.

  • 出版日期2014-5-19