摘要

Fuel cladding is one of the key components in a fission reactor that confines radioactive materials inside a fuel tube. During reactor operation, however, cladding is sometimes breached, and radioactive materials leak from the fuel pellet into the coolant water through the breach. The primary coolant water is therefore monitored so that any leak is quickly detected; coolant water is periodically sampled, and the concentration of radioactive iodine 131 (I-131), for example, is measured. Depending on the measured leakage concentration, the faulty fuel assembly with leaking rod is removed from the reactor and replaced immediately or at the next refueling. In the present study, an effort has been made to develop a methodology to optimize the management for replacement of faulty fuel assemblies due to cladding failures using measured leakage concentration. A model numerical equation is proposed to describe the time evolution of an increase in I-131 concentration due to cladding failures and is then solved using the Monte Carlo method as a function of sampling rate. Our results indicate that, to achieve rationalized management of failed fuels, higher resolution to detect a small amount of I-131 is not necessarily required, but more frequent sampling is favorable.

  • 出版日期2015-5-4

全文