Assessment of a Variational Inversion System for Rainfall Rate Over Land and Water Surfaces

作者:Iturbide Sanchez Flavio*; Boukabara Sid Ahmed; Chen Ruiyue; Garrett Kevin; Grassotti Christopher; Chen Wanchun; Weng Fuzhong
来源:IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3311-3333.
DOI:10.1109/TGRS.2011.2119375

摘要

A comprehensive system that is used to invert the geophysical products from microwave measurements has recently been developed. This system, known as the Microwave Integrated Retrieval System (MiRS), ensures that the final solution is consistent with the measurements and, when used as input to the forward operator, fits them to within the instrument noise levels. In the presence of precipitation, this variational algorithm retrieves a set of hydrometeor products consisting of cloud liquid water, ice water, and rain water content profiles. This paper presents the development and assessment of the MiRS rainfall rate that is derived based on a predetermined relationship of the rainfall with these hydrometeor products. Since this relationship relies on the geophysical products retrieved by the MiRS as inputs and not on sensor-dependent parameters, the technique is suitable for all microwave sensors to which the MiRS is applied. This precipitation technique has been designed to facilitate its transition from research to operations when applied to current and future satellite-based sensors. Currently, the MiRS rainfall rate technique has been implemented operationally at the U. S. National Oceanic and Atmospheric Administration (NOAA) for the NOAA-18, NOAA-19, Metop-A Advanced Microwave Sounding Unit, and Microwave Humidity Sensor, as well as for the Defense Meteorological Satellite Program (DMSP)-F16 and DMSP-F18 Special Sensor Microwave Imager/Sounder microwave satellite sensors. For the validation of the MiRS rainfall rate technique, extensive comparisons with state-of-the-art precipitation products derived from rain gauge, ground-based radar, and satellite-based microwave observations are presented for different regions and seasons, and over land and ocean. The MiRS rainfall rate technique is shown to estimate precipitation, with a skill comparable to other satellite-based microwave precipitation algorithms, including the MSPPS, 3B40RT, and MWCOMB, while showing no discontinuities at coasts. This is a relevant result, considering that the MiRS is a system not merely designed to retrieve the rainfall rate but to consistently estimate a comprehensive set of atmospheric and surface parameters from microwave measurements.

  • 出版日期2011-9

全文