摘要

Most of the scientific and engineering applications require accurate computations. Double precision floating point computations are not enough for many applications like climate modelling, computational physics, etc. Efficient design of quadruple precision floating point adder is needed for these applications. The proposed multi-mode quadruple precision floating point adder architecture supports four single precision operations in parallel, as well as two double precision operations in parallel and also supports one quadruple precision operation. Compared to existing Quadruple precision floating point adders and Dual mode Quadruple precision floating point adder, the proposed architecture can perform more computations with less area because of resource sharing among different precision operands. The proposed Multi-mode quadruple precision adder supports both normal and subnormal operations and also the exceptional case handling such as infinity, Not a Number (NaN) and zero cases. The proposed adder has been designed and implemented in both ASIC and FPGA. During ASIC implementation with 90 nm technology using the synopsis tool, the proposed Multi-mode quadruple precision floating point adder has a 38.57% smaller area compared to the existing quadruple precision floating point adder. Similarly, the proposed design reduces the area by 29.28% and 35.68% when implemented on Virtex 4 and Virtex 5 FPGAs respectively.

  • 出版日期2016-9

全文