摘要

Background: Traumatic subarachnoid hemorrhage (TSAH) related to alcohol abuse is a notable risk factor. Here, we investigated the vascular morphology and biomechanics of TSAH in rat models of acute alcoholic intoxication and chronic alcoholism rats to explore the possible mechanisms of TSAH. Methods: Sixty male Sprague-Dawley rats were divided into acute alcoholic intoxication and chronic alcoholism groups. Edible spirituous liquor (56% vol/vol) was intragastrically given (15 mL/kg) once to the rats in the acute group, and given twice daily (8 mL/kg for 2 weeks and 12 mL/kg for another 2 weeks) to rats in the chronic group. A self-made instrument was used to inflict head injury. Whole brain, arterial blood, and thoracic aorta of rats were sampled for morphologic and biomechanical examination. Results: Compared with the acute alcoholic rats, the chronic alcoholic rats showed significant morphologic and biomechanical changes: (1) decreased body weight (p < 0.05), (2) higher morbidity and mortality from TSAH (p < 0.01), (3) greater mean thickness of vascular wall of subarachnoid small arteries and each layer thickness of thoracic aorta (p < 0.05), (4) decreased failure load and corresponding extensibility (60 kPa and limit load) of thoracic aorta, and (5) increased elastic modulus (30 kPa, range in physiologic stress) (p < 0.05). Conclusions: Chronic alcoholism can induce the morphologic and biomechanical changes in cerebral vessels and thoracic aorta. The synergistic effect of alcohol abuse and minor blow may be one of the mechanisms of TSAH. High blood pressure from long-term alcohol abuse is also a notable factor.