A Novel Magnetic Stimulator Using Parallel Excited Coils and Capable of High Frequency Stimulation

作者:Wankhar Syrpailyne*; Devasahayam Suresh; Babu Srinivasa
来源:Journal of Medical Devices, Transactions of the ASME, 2014, 8(1): 011006.
DOI:10.1115/1.4025422

摘要

Magnetic stimulators are used for transcranial and peripheral stimulation of nerves for diagnostic, therapeutic, and research purposes. Stimulation is achieved by generating a rapidly changing magnetic field to induce a current at the nerve of interest. Effective nerve stimulation requires a current transient of about 10(8) A/s. This current is obtained by switching the current through a thyristor or an insulated gate bipolar transistor (IGBT). Insulated gate bipolar transistors have better turn off characteristics than thyristors. Due to the large currents, fast switching, and inductive load required in magnetic stimulators, spike voltages can occur and cause device damage. Therefore, they require elaborate protection circuitry. Contemporary magnetic stimulators are large, bulky, and give a current wave that is constrained by the device characteristics rather than decided by physiology. Recent instruments using IGBTs have addressed this question. However, the IGBTs require special considerations to protect them against damage. No magnetic stimulators reported so far can stimulate at rates greater than 60 Hz (Magstim Rapid(2), two linked stimulators). A novel magnetic stimulator design is presented in this paper which uses a set of stacked coils driven by independent but synchronized electronic circuits to distribute the current so that only a fraction of the required current flows through any given circuit element. The coils can be arranged in several different geometries, depending on the location and shape of the nerves to be stimulated. While such paralleling of coils and control circuits is not so important for the thyristor circuit design, in the case of the IGBT design it allows the use of smaller IGBTs and better transient control. The design of the coils and independent excitation improves the current control and the magnetic field that is generated. The result is a portable instrument with well controlled rectangular pulse shapes. This stimulator is also capable of much higher frequencies (tested up to 100 Hz) than previously reported. Experimental tests have been compared with the biophysical analysis of stimulation with this instrument. Peripheral nerve stimulation and the elicited compound muscle action potential was used to validate the instrument. The instrument has been tested for the controlled recruitment of a compound nerve at up to 100 Hz. In this paper we present a portable magnetic stimulator capable of high frequency stimulation and rectangular stimulation pulse. These features should give fresh momentum to the use of magnetic stimulation in neurological investigations and interventions. In particular, we expect that it will find wide clinical use such as in pediatric neurology, psychiatry, and neuromodulation.

  • 出版日期2014-3

全文