摘要

Optimization algorithms coupled with computational fluid dynamics are used for wind turbines airfoils design. This differs from the traditional aerospace design process since the lift-to-drag ratio is the most important parameter and the angle of attack is large. Computational fluid dynamics simulations are performed with the incompressible Reynolds-averaged Navier-Stokes equations in steady state using a one equation turbulence model. A detailed validation of the simulations is presented and a computational domain larger than suggested in literature is shown to be necessary. Different approaches to parallelization of the computational code are addressed. Single and multiobjective genetic algorithms are employed and artificial neural networks are used as a surrogate model. The use of artificial neural networks is shown to reduce computational time by almost 50%.

  • 出版日期2012-10