摘要

Although the effect of litter mixture on decomposition has been well documented, few studies have examined the relationships between richness and relative abundance of leaf species in litter mixture and changes in universal fungal communities during the decomposition process in temperate forests. In this study, we used the litterbag method and included three leaf litter species, i.e., aspen (Populus davidiana Dode), birch (Betula platyphylla Sukaczev) and oak (Quercus mongolica Fischer ex Ledebour), to investigate the mass loss rate and diversity of universal fungal communities in each litter treatment, which were sampled in situ after 180, 240, 300 and 360 days of decomposition (between 2012 and 2013) in broadleaved mixed forests in Chinese temperate forests. Eight mixture proportions were examined: pure aspen litter (10A), pure birch litter (10B), pure oak litter (10O), 50% aspen litter mixed with 50% birch litter (5A:5B), 50% aspen litter mixed with 50% oak (5A:5O), 50% birch litter mixed with 50% oak litter (5B:5O), 10% birch litter mixed with 80% aspen litter and 10% oak litter (1B:8A:1O), 30% birch litter mixed with 40% aspen litter and 30% oak litter (3B:4A:3O). Over 360 days of decomposition, approximately 46.6%, 43.6%, 28.0%, 54.4%, 40.2%, 39.5%, 54.5% and 49.46% of litter mass was lost from 10A, 10B, 10O, 5A:5B, 5A:5O, 5B:5O, 1B:8A:1O and 3B:4A:3O, respectively. In addition, the number of fungal denaturing gradient gel electrophoresis (DGGE) bands showed a positive correlation with mass loss rate, indicating a positive feedback between leaf litter decomposition and universal fungal communities in the leaf litter. The results revealed that the 5A:5B, 1B:8A:1O and 3B:4A:3O litter mixtures had a synergistic effect on the litter mixture, while the 5A:5O and 5B:5O litter mixtures had a nearly neutral effect on the litter mixture. Thus, leaf litter species composition and relative abundance seem to be more important than leaf litter richness in driving the direction and magnitude of litter mixture decomposition.