摘要

This paper concerns the issue of mechanism design of a simplified 6-DOF 6-RUS parallel manipulator. The design of robotic mechanisms, especially for 6-DOF parallel manipulators, is an important and challenging problem in the field of robotics. This paper presents a design method for robotic mechanisms, which is based on the physical model of the solution space. The physical model of the solution space, which can transfer a multi-dimensional problem to a two or three-dimensional one, is a useful tool to obtain all kinds of performance atlases. In this paper, the physical model of the solution space for spatial 6-RUS (R stands for revolute joint, U universal joint and S spherical joint) parallel manipulators is established. The atlases of performances, such as workspace and global conditioning index, are plotted in the physical model of the solution space. The atlases are useful for the mechanism design of the 6-RUS parallel manipulators. The technique used in this paper can be applied to the design of other robots.