摘要

Utilizing ANSYS CFX commercial software and volume fraction of fluid (VOF) model, fluctuation behavior of steel/slag interface was numerically simulated in continuous casting mold with static magnetic field, and the influence of metal jet characteristics on the behavior of steel/slag interface was investigated. The results indicated that the behavior of steel/slag interface is similar at different process parameters, which is closely related to the characteristic of the flow field. The steel/slag interface has an obvious trough characteristic, which can be divided into three zones: frontal valley zone, back valley zone and horizontal zone; as the magnetic flux density increases, the fluctuation of liquid level increases firstly and then decreases, and a reasonable magnetic flux density can make steel/slag interface obtain a relatively flat interface, which can prevent slag from being entrapped into liquid steel. For a thin slab continuous casting process, when the casting speed is 4 m/min, a reasonable magnetic flux density is about 0.5 T, and the interfacial fluctuation is weaker. No matter the position of magnetic field is horizontal or vertical, for different operating parameters, there is a corresponding reasonable magnetic field position where the steel/slag interface fluctuation can be properly controlled and slag entrapment can be prevented.