摘要

An important, but as yet incompletely resolved, issue is whether spatial knowledge acquired during navigation differs significantly from that acquired by studying a cartographic map. This, in turn, is relevant to understanding the generalizability of the concept of a "cognitive map," which is often likened to a cartographic map. On the basis of previous theoretical proposals, we hypothesized that route and cartographic map learning would produce differences in the dynamics of acquisition of landmark-referenced (allocentric) knowledge, relative to view-referenced (egocentric) knowledge. We compared this model with competing predictions from two other models linked to route versus map learning. To test these ideas, participants repeatedly performed a judgment of relative direction (JRD) and a scene- and orientation-dependent pointing (SOP) task while undergoing route and cartographic map learning of virtual spatial environments. In Experiment 1, we found that map learning led to significantly faster improvements in JRD pointing accuracy than did route learning. In Experiment 2, in contrast, we found that route learning led to more immediate and greater improvements overall in SOP accuracy, as compared to map learning. Comparing Experiments 1 and 2, we found a significant three-way interaction effect, indicating that improvements in performance differed for the JRD versus the SOP task as a function of route versus map learning. We interpreted these findings as suggesting that the learning modality differentially affects the dynamics of how we utilize primarily landmark-referenced versus view-referenced knowledge, suggesting potential differences in how we utilize spatial representations acquired from routes versus cartographic maps.

  • 出版日期2014-10