摘要

This paper aims to solve the finite time consensus control problem for spacecraft formation flying (SFF) while accounting for multiple time varying communication delays and changing topologies among SFF members. First, in the presence of model uncertainties and external disturbances, the coupled dynamics of relative position and attitude are derived based on the Lie group SE(3), in which the position and attitude tracking errors with respect to the virtual leader whose trajectory is computed offline are described by exponential coordinates. Then, a nonsingular fast terminal sliding mode (NFTSM) constructed by the exponential coordinates and velocity tracking errors is developed, based on which adaptive fuzzy NFTSM control schemes are proposed to guarantee that the ideal configurations of the SFF members with respect to the virtual leader can be achieved in finite time with high accuracy and all the aforementioned drawbacks can be overcome. The convergence and stability of the closed-loop system are proved theoretically by Lyapunov methods. Finally, numerical simulations are presented to validate the effectiveness and feasibility of the proposed controllers.