摘要

Sensible design and synthesis of conjugating polymers is important to the development of polymer solar cells (PSCs). In this work, we synthesized and characterized two dioctylfluorene-thiophene based conjugated copolymers, PFTDPP and PFTpBT, having different acceptor groups on the backbone. The photovoltaic properties of the copolymers blended with 6,6-phenyl-C-61-butyric acid methyl ester (PC61BM) as an electron acceptor were obtained. The PSC based on a conventional device configuration ITO/PEDOT:PSS/ Polymer:PC61BM/LiF/Al showed power conversion efficiencies (PCEs) of 2.42% and 3.02% for PFTDPP and PFTpBT, respectively. Methanol treatment was introduced to further optimize device performance, and the solvent treatment gave a dramatic increase in PCE. The best PCEs could reach 4.25% and 4.20% after methanol treatment under AM 1.5G illumination with an intensity of 100 mW cm(-2) from a solar simulator.

  • 出版日期2015-12