摘要

This paper presents a microelectromechanical systems contact switch having both hard and soft contact materials in a single cantilever-type switching device. It operates with a zipping mechanism within which both contact materials (Pt-to-Pt and Au-to-Au) make individual contact sequentially and then detach in a reverse sequence to take advantage of both contact materials: low contact resistance and high reliability in a hot switching condition. In addition, an extended gate electrode and double T-shape cantilever beam structures effectively facilitate the sequential actuation. The fabricated switch successfully demonstrated a "dual-contact concept"-it made two sequential contacts at 31 (Pt-to-Pt) and 56 V (Au-to-Au) and it was then detached at 49 (Au-to-Au) and 23 V (Pt-to-Pt) in a single switching operation. Also, it achieved a low contact resistance of 0.3-0.5 Omega (including beam and some portion of the signal line resistances) at gate voltage from 60 to 70 V owing to the Au-to-Au contact in the device. Simultaneously, negligible contact resistance variation was observed during 2 x 10(6) cycles at a voltage/current level of 10 V/10 mA under hot switching and unpackaged environments, representing > 100-fold longer lifetime than that of a conventional Au-to-Au cantilever switch fabricated on the same wafer. [2013-0085]

  • 出版日期2014-6