摘要

We have recently seen significant advancements in the development of robotic machines that are designed to assist people with their daily lives. Socially assistive robots are now able to perform a number of tasks autonomously and without human supervision. However, if these robots are to be accepted by human users, there is a need to focus on the form of human-robot interaction that is seen as acceptable by such users. In this paper, we extend our previous work, originally presented in Ruiz-Garcia et al. (in: Engineering applications of neural networks: 17th international conference, EANN 2016, Aberdeen, UK, September 2-5, 2016, proceedings, pp 79-93, 2016. 10.1007/978-3-319-44188-7_6), to provide emotion recognition from human facial expressions for application on a real-time robot. We expand on previous work by presenting a new hybrid deep learning emotion recognition model and preliminary results using this model on real-time emotion recognition performed by our humanoid robot. The hybrid emotion recognition model combines a Deep Convolutional Neural Network (CNN) for self-learnt feature extraction and a Support Vector Machine (SVM) for emotion classification. Compared to more complex approaches that use more layers in the convolutional model, this hybrid deep learning model produces state-of-the-art classification rate of , when tested on the Karolinska Directed Emotional Faces dataset (Lundqvist et al. in The Karolinska Directed Emotional Faces-KDEF, 1998), and offers similar performance on unseen data when tested on the Extended Cohn-Kanade dataset (Lucey et al. in: Proceedings of the third international workshop on CVPR for human communicative behaviour analysis (CVPR4HB 2010), San Francisco, USA, pp 94-101, 2010). This architecture also takes advantage of batch normalisation (Ioffe and Szegedy in Batch normalization: accelerating deep network training by reducing internal covariate shift. http://arxiv.org/abs/1502.03167, 2015) for fast learning from a smaller number of training samples. A comparison between Gabor filters and CNN for feature extraction, and between SVM and multilayer perceptron for classification is also provided.

  • 出版日期2018-4