摘要

Flexible non-volatile memories have received much attention as they are applicable for portable smart electronic device in the future, relying on high-density data storage and low-power consumption capabilities. However, the high-quality oxide based nonvolatile memory on flexible substrates is often constrained by the material characteristics and the inevitable high-temperature fabrication process. In this paper, a protocol is proposed to directly grow an epitaxial yet flexible lead zirconium titanate memory element on muscovite mica. The versatile deposition technique and measurement method enable the fabrication of flexible yet single-crystalline non-volatile memory elements necessary for the next generation of smart devices.

全文