摘要

Fluid-structure interaction technique seems to be one of the most promising possibilities for theoretical analysis of lubrication problems. It allows coupling of different physical fields in one computational task, taking into account the interaction between them. In this article, two sets of fluid-structure interaction analyses focusing on the bearing performance evaluation are presented. One analysis was applied to a water-lubricated journal bearing and the other to a hydrodynamic thrust bearing lubricated with oil. Steady-state operation was considered in both cases. In the presented cases of fluid-structure interaction analyses, all important phenomena accompanying bearing operation are considered, e.g. lubricant flow, structure movements and their deformations as well as heat transfer in case of thrust bearing. The problems encountered during modelling are discussed in this article, as well as the results of calculations: hydrodynamic pressures, gap geometries or temperature profiles.

  • 出版日期2013-8