摘要

Connected Vehicle is a new intelligent transportation paradigm that uses wireless communications to improve traffic safety and efficiency. It has received a great deal of attention in recent years, across many communities. While the DSRC is widely recognized as the de facto standard for V2V, other wireless technologies are required for large-scale deployment of V2I communications. Thanks to its high data rates and large-scale deployment, the LTE-A enhanced by small cells (SCs) densification, is positioned as one of the major candidate technologies for V2I communications. However, using LTE-A small cells for V2I communications is challenging due to their small coverage which leads to frequent handoffs and more signaling overhead. In this paper, a novel architecture that integrates VANET and 4G LTE-A Heterogeneous Network for enhanced mobility in LTE-A small cells is introduced. First, we propose a new network-based mobile gateway selection scheme with one-hop clustering to efficiently relay traffic from neighboring vehicles toward the serving SC. The problem is formulated as a multi-objective binary programming problem. Then, for seamless mobility of connected vehicles, we propose a local k-hops anchor-based mobility scheme with three procedures, namely intra-domain, k-hops inter-domain and inter-domain procedures. Numerical results show the effectiveness of the proposed mobility schemes for reducing the generated signaling load towards the core network.

  • 出版日期2018-7-20