Degradation behavior of triclosan by co-exposure to chlorine dioxide and UV irradiation: influencing factors and toxicity changes

作者:Li, Qing-song*; Cai, Hui-wen; Li, Guo-xin; Chen, Guo-yuan; Ma, Xiao-yan; He, Wen-long
来源:Environmental Science and Pollution Research, 2018, 25(10): 9391-9401.
DOI:10.1007/s11356-018-1223-z

摘要

This study investigated the transformation of triclosan (TCS) following co-exposure to UV irradiation and ClO2. Special attention was given to understand the influencing of water quality parameters and toxicity changes during the co-exposure process. The results show that the co-exposure process prompted TCS elimination quickly and effectively, with more than 99% of TCS degraded under the experimental conditions. The molar yield ratios of 2,4-dichlorophenol/TCS (2,4-DCP/TCS) were calculated to be 35.81-74.49%; however, the by-product of 2,8-dichlorodibenzop-dioxin (2,8-Cl2DD) was not detected. The TCS degradation was sensitive to ClO2 dosage, pH, H2O2, and natural organic matter (NOM), but not to the carbonate (CO32-) concentration. Neutral and slightly alkaline condition were favorable to TCS elimination. The TCS removal rate increased from 85.33 to 99.75% when the ClO2 concentration increased from 0.25 to 1.5 mg L-1. TCS degradation can be promoted at low NOM level (1, 3, and 5 mg L-1), whereas was inhibited at high NOM concentrations of 7 and 9 mg L-1. While adding H2O2, the degradation rate of TCS increased with increasing H2O2 concentration from 1 to 3 mg L-1; however, too low or overdosed H2O2 (0.5 and 5 mg L-1) hindered TCS degradation. Based on the results of a microtox bioassay, the toxicity did not change following the co-exposure process.