摘要

In the present work, the wake development behind small-scale wind turbines is studied when introducing local topography variations consisting of a series of sinusoidal hills. Additionally, wind-tunnel tests with homogeneous and sheared turbulent inflows were performed to understand how shear and ambient turbulence influence the results. The scale of the wind-turbine models was about 1000times smaller than full-size turbines, suggesting that the present results should only be qualitatively extrapolated to real-field scenarios. Wind-tunnel measurements were made by means of stereoscopic particle image velocimetry to characterize the flow velocity in planes perpendicular to the flow direction. Over flat terrain, the wind-turbine wake was seen to slowly approach the ground while it propagated downstream. When introducing hilly terrain, the downward wake deflection was enhanced in response to flow variations induced by the hills, and the turbulent kinetic energy content in the wake increased because of the speed-up seen over the hills. The combined wake observed behind 2 streamwise aligned turbines was more diffused and when introducing hills, it was more prone to deflect towards the ground compared to the wake behind an isolated turbine. Since wake interactions are common at sites with multiple turbines, this suggested that it is important to consider the local hill-induced velocity variations when onshore wind farms are analysed. Differences in the flow fields were seen when introducing either homogeneous or sheared turbulent inflow conditions, emphasizing the importance of accounting for the prevailing turbulence conditions at a given wind-farm site to accurately capture the downstream wake development.

  • 出版日期2018-8