摘要

The spectral properties of Hermitian matrix polynomials with real eigenvalues have been extensively studied, through classes such as the definite or definitizable pencils, definite, hyperbolic, or quasihyperbolic matrix polynomials, and overdamped or gyroscopically stabilized quadratics. We give a unified treatment of these and related classes that uses the eigenvalue type (or sign characteristic) as a common thread. Equivalent conditions are given for each class in a consistent format. We show that these classes form a hierarchy, all of which are contained in the new class of quasidefinite matrix polynomials. As well as collecting and unifying existing results, we make several new contributions. We propose a new characterization of hyperbolicity in terms of the distribution of the eigenvalue types on the real line. By analyzing their effect on eigenvalue type, we show that homogeneous rotations allow results for matrix polynomials with nonsingular or definite leading coefficient to be translated into results with no such requirement on the leading coefficient, which is important for treating definite and quasidefinite polynomials. We also give a sufficient and necessary condition for a quasihyperbolic matrix polynomial to be strictly isospectral to a real diagonal quasihyperbolic matrix polynomial of the same degree, and show that this condition is always satisfied in the quadratic case and for any hyperbolic matrix polynomial, thereby identifying an important new class of diagonalizable matrix polynomials.

  • 出版日期2012-5-15