摘要

研究电池电化学过程产热对锂离子电池的热管理至关重要。本工作建立了三元NMC锂离子电池的电化学-热耦合模型,首先通过对该电池进行不同倍率的放电与温度实验测试,验证了该模型在电压和温度变化预测准确性。然后针对不同温度下的表现进行模拟仿真研究。在室温下,无论倍率大小,负极产热总是小于正极产热,虽然负极的极化热高于正极,但其可逆吸热较大,导致产热水平低于正极。而随着放电倍率的增加,正极产热所占比例减小,负极所占比例先增加后减小,而集流体产热所占比例持续增加。然而,低温条件下的电池放电表现出与室温情况不同的产热特性,首先,低温导致低倍率负极产热率比例大大增加,负极可逆热为总可逆热的主要贡献热。而高倍率负极产热率减少,正极则呈相反趋势。其次在低温下放电时间随倍率增加呈现不同趋势,高倍率下放电电压快速降低导致放电不完全,在低倍率0.5~1 C放电运行时出现了电压反弹现象但基本放电完全,这是由于低温限制了负极颗粒内部锂离子及时向外扩散,造成电阻增加与电压快速降低,同时大量产热导致自身温升,从而在低倍率下获得电压反弹并保持持续放电的能力。

全文