Activation of Gene Transcription by Heat Shock Protein 27 May Contribute to Its Neuronal Protection

作者:Friedman Meyer J; Li Shihua*; Li Xiao Jiang
来源:Journal of Biological Chemistry, 2009, 284(41): 27944-27951.
DOI:10.1074/jbc.M109.037937

摘要

Heat shock proteins are up-regulated as a physiological response to stressful stimuli and generally function as molecular chaperones for improperly folded protein substrates. The small heat shock protein HSP27 (or HSPB1) has multiple cytoplasmic roles. HSP27 also can translocate to the nucleus in response to stress, but the functional significance of this nuclear distribution has not been elucidated. We have previously implicated HSP27 as a genetic modifier of spinocerebellar ataxia 17 (SCA17), a neurological disease caused by a polyglutamine expansion in the TATA-binding protein (T]BP). Altered expression of HSP27 is also found in cell models of other polyglutamine diseases, including Huntington disease as well as SCA3 and SCA7. Here, we show that Hsp27, unlike Hsp70, is not detected in mutant TBP aggregates in primary cerebellar granule neurons from transgenic SCA17 mice. Although HSP27 overexpression does not reduce the aggregation of cotransfected mutant TBP containing 105 glutamines, it potentiates activated transcription from both TATA-containing and TATA-lacking promoters. Neither HSP40 nor HSP70 elicits the same transcriptional effect. Moreover, HSP27 interacts with the transcription factor SP1, and coexpression of SP1 and nuclear localization signal-tagged HSP27 synergistically activates reporter constructs for the SP1-responsive neurotrophic receptor genes Ngfr(p75) and TRKA. Overexpression of nuclear localization signal-tagged HSP27 also rescues mutant TBP-mediated down-regulation of TrkA in a PC12 cell model of SCA17. These results indicate that nuclear HSP27 can modulate SP1-dependent transcriptional activity to promote neuronal protection.

  • 出版日期2009-10-9