A computational method for three-dimensional reconstruction of the microarchitecture of myometrial smooth muscle from histological sections

作者:Lutton E Josiah; Lammers Wim J E P; James Sean; van den Berg Hugo A; Blanks Andrew M*
来源:PLos One, 2017, 12(3): e0173404.
DOI:10.1371/journal.pone.0173404

摘要

Background The fibrous structure of the myometrium has previously been characterised at high resolutions in small tissue samples (< 100 mm(3)) and at low resolutions (similar to 500 mu m per voxel edge) in whole-organ reconstructions. However, no high-resolution visualisation of the myometrium at the organ level has previously been attained. Methods and results We have developed a technique to reconstruct the whole myometrium from serial histological slides, at a resolution of approximately 50 mu m per voxel edge. Reconstructions of samples taken from human and rat uteri are presented here, along with histological verification of the reconstructions and detailed investigation of the fibrous structure of these uteri, using a range of tools specifically developed for this analysis. These reconstruction techniques enable the high-resolution rendering of global structure previously observed at lower resolution. Moreover, structures observed previously in small portions of the myometrium can be observed in the context of the whole organ. The reconstructions are in direct correspondence with the original histological slides, which allows the inspection of the anatomical context of any features identified in the three-dimensional reconstructions. Conclusions and significance The methods presented here have been used to generate a faithful representation of myometrial smooth muscle at a resolution of similar to 50 mu m per voxel edge. Characterisation of the smooth muscle structure of the myometrium by means of this technique revealed a detailed view of previously identified global structures in addition to a global view of the microarchitecture. A suite of visualisation tools allows researchers to interrogate the histological microarchitecture. These methods will be applicable to other smooth muscle tissues to analyse fibrous microarchitecture.

  • 出版日期2017-3-16