摘要

Metal-intermetallic laminate composites (MIL) based on the Ti-aluminide system are a new class of lightweight structural materials that can be used as either appliqu, or structural armor. The explicit 2D finite element code LS-DYNA was employed to investigate the ballistic performance and failure mechanism of MIL composite plate subjected to impact loading. For comparison's sake, the penetration simulation was also conducted for a monolithic intermetallic Al3Ti sample under the same conditions. Damage tolerant abilities of the two targets were evaluated based on the analysis of the projectile tail velocity, crack density and absorbed material energy. The simulation results indicated that when cracks initiated in the Al3Ti matrix propagated to the interface between the matrix and reinforcement, their directions changed due to the bridging effect of the reinforcement Ti, which enabled the MIL composite to consume more energy as a result of the increase of the crack path lengths created by the crack deflection and bifurcation. Additionally, some other energy-absorbing mechanisms, such as deflection of cracks, plastic deformation of the ductile Ti also play important roles in enhancing the energy-absorbing capacity of the MIL composites.