摘要

Acetylcholine (ACh) and choline (Ch) play a critical role in cholinergic neurotransmission and the abnormalities in their concentrations are related to several neural diseases. Therefore, the in vivo determination of ACh and Ch is important to the research on neurodegenerative disorders. In this work, electrochemical biosensors based on poly(m-(1,3)-phenylenediamine) (pmPD) and polytyramine (PTy) modified enzyme electrodes were fabricated. The electropolymerized pmPD polymer was used to exclude interfering substances and the PTy layer facilitated the immobilization of acetylcholinesterase (AChE) and choline oxidase (ChOx). Then, ACh/Ch sensor and Ch sensor were coupled with microdialysis to produce a novel device, which provides a sensitive and selective method for simultaneous determination of ACh and Ch. This method has detection limits of 63.0 +/- 3.4 nM for ACh and 25.0 +/- 1.2 nM for Ch. The integrated device was successfully applied to assessing the impact of endogenous neurotoxin N-methyl-(R)-salsolinol [1(R),2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-NMSal] on ACh and Ch concentration, which is of great benefit to understand the pathogenesis of Parkinson's disease.