A novel anticancer agent, retigeric acid B, displays proliferation inhibition, S phase arrest and apoptosis activation in human prostate cancer cells

作者:Liu, Han; Liu, Yi-qing; Liu, Yong-qing; Xu, Ai-hui; Young, Charles Y. F.; Yuan, Hui-qing*; Lou, Hong-xiang
来源:Chemico-Biological Interactions, 2010, 188(3): 598-606.
DOI:10.1016/j.cbi.2010.07.024

摘要

Retigeric acid B (RB), a naturally occurring pentacyclic triterpenic acid, has been noted for its antifungal properties in vitro. Here, we observed that RB inhibited prostate cancer cell proliferation and induced cell death in a dose-dependent manner, but exerted very little inhibitory effect on noncancerous prostate epithelial cell viability. Treatment of androgen-independent PC-3 cells with RB caused a moderate increase in p21(Cip1), and enforced the cell cycle arrest in the S phase. A block of S phase was accompanied with decreases in cyclin B, and increases in cyclin E and cyclin A proteins and phosphorylated retinoblastoma protein (pRb), whereas the expression of cdk2 remained almost unchanged in PC-3 cells exposed to RB. Moreover, RB significantly inhibited DNA synthesis with a dose-dependent reduction in the incorporation of BrdU into DNA, and enhanced apoptosis of PC-3 cells with induction of a higher ratio of Bax/Bcl-2 proteins, and activation of caspase-3 which, in turn, promoted the cleavage of poly (ADP-ribose) polymerase (PARP). However, pretreatment with the pan-caspase inhibitor z-VAD-fmk only partially alleviated RB-triggered apoptosis in PC-3 cells, suggesting the involvement of both caspase-dependent and caspase-independent pathways. Additionally, treatment of androgen-sensitive LNCaP cells with RB led to a reduction in the expression of androgen receptor (AR), and subsequently decreased the transactivity of AR. These observations help to support the search for promising candidates to treat prostate cancer.