NON-INVASIVE EVALUATION OF RIGHT VENTRICULAR FUNCTION WITH REAL-TIME 3-D ECHOCARDIOGRAPHY

作者:Chen, Ran*; Zhu, Meihua; Amacher, Kacie; Wu, Xia; Sahn, David J.; Ashrafy, Muhammad
来源:Ultrasound in Medicine and Biology, 2017, 43(10): 2247-2255.
DOI:10.1016/j.ultrasmedbio.2017.05.007

摘要

The aim of this study was to evaluate the accuracy and feasibility of real-time 3-D echocardiography (3-DE) in assessing right ventricular (RV) systolic function. A latex balloon was inserted into the right ventricle of 20 freshly harvested pig hearts which were then passively driven by a pulsatile pump apparatus. The RV global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS) and RV ejection fraction (RVEF), derived from 3-DE, as well as the RVEF obtained from 2-D echocardiography (2-DE) were quantified at different stroke volumes (30-70 mL) and compared with sonomicrometry data. In all comparisons, 3-D GLS, GCS, GAS, 2-D RVEF and 3-D RVEF exhibited strong correlations with sonomicrometry data (r = 0.89, 0.79, 0.74, 0.80, and 0.93, respectively; all p values < 0.001). Bland-Altman analyses revealed slight overestimations of echo-derived GLS, GCS, 2-DE RVEF and 3-DE RVEF compared with sonomicrometry values (bias = 1.55, 2.72, 3.59 and 2.21, respectively). Furthermore, there is better agreement amongGLS, 3-DRVEF and the sonomicrometry values than between GCS and 2-D RVEF. Real-time 3-DE is more feasible and accurate for assessing RV function than 2-DE. GLS is a potential alternative parameter for quantifying RV systolic function. (E-mail: dlcr_cr@126.