摘要

This paper addresses output-feedback-based distributed adaptive consensus control of multi-agent systems having Lipschitz nonlinear dynamics. Distributed dynamic protocols are designed based on the relative outputs of neighbouring agents and the adaptive coupling weights, under which consensus is reached between the nonlinear systems for all undirected connected communication topologies. Extension to the case of Lipschitz nonlinear multi-agent systems subjected to external disturbances is further studied, and a robust adaptive fully distributed consensus protocol is suggested. By application of a decoupling technique, necessary and sufficient conditions for the existence of these consensus protocols are provided in terms of linear matrix inequalities. Finally, numerical simulation results are demonstrated to validate the effectiveness of the theoretical results.

  • 出版日期2016