摘要

We propose and numerically investigate the operation of a novel class of polarization-independent splitters based on the photonic crystal fiber (PCF) technology. The proposed polarization-independent feature of the PCF splitter is realized by uniformly distributed elliptically-shaped airholes in the cladding of a dual-core PCF. The design procedure follows a rigorous synthesis protocol based on exact equations for describing the wavelength de-coupling mechanism, and on full-vectorial finite element as well as beam propagation methods for optical characterization of PCFs. The compact de-coupling lengths as well as the low cross-talk over appreciable optical bandwidths are the main advantages of the proposed PCF splitter. The proposed device can be employed in reconfigurable optical communication systems for performing wavelength de-multiplexing operation, especially for fiber-to-the-home applications, as well as the emerging passive optical network applications.

  • 出版日期2005-9-19