Activation of ATP-sensitive K+ channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes

作者:Lu T; Hoshi T; Weintraub NK; Spector AA; Lee HC*
来源:The Journal of Physiology, 2001, 537(3): 811-827.
DOI:10.1113/jphysiol.2001.012896

摘要

1. We examined the effects of epoxyeicosatrienoic acids (EETs), which are cytochrome P450 metabolites of arachidonic acid (AA), on the activities of the ATP-sensitive K+ (K-ATP) channels of rat cardiac myocytes, using the inside-out patch-clamp technique. 2. In the presence of 100 muM cytoplasmic ATP, the K-ATP channel open probability (P-o) was increased by 240 +/- 60% with 0.1 muM 11,12-EET and by 400 +/- 54% with 5 muM 11,12-EET (n = 5-10, P < 0.05 vs. control), whereas neither 5 muM AA nor 5 muM 11,12-dihydroxyeicosatrienoic acid (DHET), which is the epoxide hydrolysis product of 11,12-EET, had any effect on P-o. 3. The half-maximal activating concentration (EC50) was 18.9 +/- 2.6 nM for 11,12-EET (n = 5) and 19.1 +/- 4.8 nM for 8,9-EET (n = 5, P = n.s. vs. 11,12-EET). Furthermore, 11,12-EET failed to alter the inhibition of K-ATP channels by glyburide. 4. Application of 11,12-EET markedly decreased the channel sensitivity to cytoplasmic ATP. The half-maximal inhibitory concentration of ATP (IC50) was increased from 21.2 +/- 2.0 muM at baseline to 240 +/- 60 muM with 0.1 muM 11,12-EET (n = 5, P < 0.05 vs. control) and to 780 +/- 30 muM 11,12-EET (n = 11, P < 0.05 vs. control). 5. Increasing the ATP concentration increased the number of kinetically distinguishable closed states, promoting prolonged closure durations. 11,12-EET antagonized the effects of ATP on the kinetics of the KATP channels in a dose- and voltage-dependent manner. 11,12-EET (1 muM) reduced the apparent association rate constant of ATP to the channel by 135-fold. 6. Application of 5 muM 11,12-EET resulted in hyperpolarization of the resting membrane potential in isolated cardiac myocytes, which could be blocked by glyburide. 7. These results suggest that EETs are potent activators of the cardiac K-ATP channels, modulating channel behaviour by reducing the channel sensitivity to ATP. Thus, EETs could be important endogenous regulators of cardiac electrical excitability.

  • 出版日期2001-12-15