Hydrogen Production from Steam Reforming of Acetic Acid over Ni-Fe/Palygorskite Modified with Cerium

作者:Wang, Yishuang; Chen, Mingqiang*; Yang, Jie; Liu, Shaomin; Yang, Zhonglian; Wang, Jun; Liang, Tian
来源:BioResources, 2017, 12(3): 4830-4853.
DOI:10.15376/biores.12.3.4830-4853

摘要

The steam reforming of acetic acid (SRA) was carried out in a fixed-bed tubular reactor with Ni-Fe/ceria-palygorskite (CPG) catalysts. The as-prepared catalysts were analyzed by N-2 adsorption-desorption, scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), H-2 temperature programmed reduction (H-2-TPR), and X-ray diffraction (XRD). The results of H-2-TPR and XRD showed that the addition of CeO2 increased the hydrogen consumption of catalysts and the interaction force between active component (Ni-Fe alloy) and carrier. Moreover, the Ni-Fe alloys were successfully synthesized in the Ni-Fe/CPG catalysts and their crystallite sizes were decreased by adding CeO2. In addition, these catalysts were employed to SRA at 600 degrees C, GHSV = 14427 h(-1) and different molar ratio of S/C. The experimental results revealed that the Ni-Fe/C(0.4)PG(0.6) catalyst can achieve the highest yield of H-2 (87%) and HOAc conversion (95%), as well as the highest stability during the process of steam SRA. Additionally, the spent catalysts were characterized by XRD, SEM, and thermogravimetric analysis (TGA). The results showed that the addition of CeO2 enhanced the stability and activity of Ni-Fe/palygorskite catalyst and reduced the coke deposition rate on the catalyst surface.