摘要

RATIONALE: Traditionally, drug analysis in biological tissue by mass spectrometry has required complicated sample pre-treatment, which not only wasted time, but also had adverse effects on the results. In order to assist assessment of potential drugs rapidly and accurately, a direct analytical method for drug detection in tissues is needed. The development of such a method is described in this study. METHODS: An anti-cancer drug, 9-phenylacridine (ACPH), injected into the kidney of mice, was directly analysed from tissues placed on the surface of a graphite rod by near-infrared (1064 nm) laser desorption single photon ionization mass spectrometry (LD/SPI-MS). RESULTS: The LD/SPI-MS method was successfully validated by direct analysis of ACPH in kidney sections of mice, without any complicated and time-consuming sample pre-treatment. The sensitivity of detection was down to about 100 fmol per spot and the wide linear dynamic range allowed quantitative detection of ACPH in complex biological samples. A drug-time curve was acquired of ACPH in the kidney of mice after the drug had been injected into the caudal vein. CONCLUSIONS: It was demonstrated that the anti-tumor drug ACPH could be directly and rapidly detected by LD/SPI-MS in biological tissues without any time-consuming pre-treatment procedure. This method could potentially be applied to the selective localization and analysis of small molecule drugs in tissues and to the study of the pharmacokinetics of new drugs.