Neural basis of the association between depressive symptoms and memory deficits in nondemented subjects: resting-state fMRI study

作者:Xie Chunming; Goveas Joseph; Wu Zhilin; Li Wenjun; Chen Guangyu; Franczak Malgorzata; Antuono Piero G; Jones Jennifer L; Zhang Zhijun*; Li Shi Jiang
来源:Human Brain Mapping, 2012, 33(6): 1352-1363.
DOI:10.1002/hbm.21291

摘要

Depressive symptoms often coexist with memory deficits in older adults and also are associated with incident cognitive decline in the elderly. However, little is known about the neural correlates of the association between depressive symptoms and memory deficits in nondemented elderly. Fifteen amnestic mild cognitive impairment (aMCI) and 20 cognitively normal (CN) subjects completed resting-state functional magnetic resonance imaging (R-fMRI) scans. Multiple linear regression analysis was performed to test the main effects of the Geriatric Depression Scale (GDS) and Rey Auditory Verbal Learning Test delayed recall (RAVLT-DR) scores, and their interaction on the intrinsic amygdala functional connectivity (AFC) network activity. Severer depressive symptoms and memory deficits were found in the aMCI group than in the CN group. Partial correlation analysis identified that the RAVLT-DR scores were significantly correlated with the AFC network in the bilateral dorsolateral prefrontal cortex (DLPFC), dorsomedial and anterior prefrontal cortex, posterior cingulate cortex (PCC), middle occipital gyrus, right inferior parietal cortex, and left middle temporal gyrus (MTG). The GDS scores were positively correlated with the AFC network in the bilateral PCC and MTG, and left DLPFC. The interactive effects of the GDS and RAVLT-DR scores on the AFC network were seen in the bilateral PCC, MTG, and left DLPFC. These findings not only supported that there were interactive neural links between depressive symptoms and memory functions in nondemented elderly at the system level, but also demonstrated that R-fMRI has advantages in investigating the interactive nature of different neural networks involved in complex functions, such as emotion and cognition. Hum Brain Mapp , 2011.