摘要

Overload has been suggested as a contributing factor for bone loss, for instance at the bone implant interface. The objective of this study is to investigate spongy bone resorption under overload using a semi-mechanistic bone remodeling theory. Since overload can cause the accumulation of microdamage in bone, in this study, it is assumed that overload will increase the osteoclastic activity, and also will reduce the osteocyte influence distance. First, a previously proposed semi-mechanistic bone remodeling theory was extended by defining a new form for the resorption probability function, which is based on experimental evidence. Then, in order to investigate the validity of our hypothesis, a three-dimensional finite element model of spongy bone was developed. The simulation results show that, first, trabeculae adapt with the mechanical stimuli placed on them. Secondly, a sharp reduction in spongy bone density will be resulted, in agreement with experimental evidence, when bone is under overload.

  • 出版日期2015-8