摘要

Terahertz band communication is envisioned as a key technology to satisfy the increasing demand for ultra-high-speed wireless links. In this paper, a multi-wideband waveform design for the THz band is proposed, by exploiting the channel peculiarities including the distance-varying spectral windows, the delay spread and the temporal broadening effects. This scheme allows the dynamical variation of the rate and the transmit power on each sub-window and improves the distance. Moreover, the closed-form expressions of the signal-to-interference-plus-the-noise and bit-error-rate for the multi-wideband waveform are derived, by considering the inter-symbol and inter-band interferences. Then, an optimization framework is formulated to solve for the multi-wideband waveform design parameters of the transmit power and the number of frames, with the aim to maximize the communication distance while satisfying the rate and the transmit power constraints. Four sub-optimal solutions are proposed and compared. The results show that the SINR increases with the transmit power and the number of frames, at the cost of the power consumption and the rate decrease. With the transmit power of 10 dBm, the largest distance to support 10 Gbps for the multi-path propagation is 4 m, which is realized via the power allocation scheme to minimize the power/bit on each sub-window and is 10% improvement over the fixed scheme. However, for the directional transmission, this scheme under-exploits the transmit power severely. Instead, the allocation scheme that minimizes the number of frames outperforms the other three schemes. In terms of the maximum distance that achieves 30 Gbps, this scheme reaches 22.5 m.

  • 出版日期2016-2-15