摘要

RATIONALE A comprehensive study of the environmental fate of pollutants is more and more required, above all on new contaminants, i.e. pharmaceuticals. As high-resolution mass spectrometry (HRMSn) may be a suitable analytical approach for characterization of unknown compounds, its performance was evaluated in this study. METHODS The analyses were carried out using liquid chromatography (LC) (electrospray ionization (ESI) in positive mode) coupled with a LTQ-Orbitrap analyzer. High-resolution mass spectrometry was employed to assess the evolution of the drug transformation processes over time; accurate masses of protonated molecular ions and sequential product ions were reported with an error below 5 millimass units, which guarantee the correct assignment of their molecular formula in all cases, while their MS2 and MS3 spectra showed several structurally diagnostic ions that allowed characterization of the different transformation products (TPs) and to distinguish the isobaric species. RESULTS The simulation of phototransformation occurring in the aquatic environment and identification of biotic and abiotic transformation products of the two pharmaceuticals were carried out in heterogeneous photocatalysis using titanium dioxide, aimed to recreate conditions similar to those found in the environmental samples. Twenty-eight main species were identified after carbamazepine transformation and twenty-nine for clarithromycin. CONCLUSIONS This study demonstrates that HRMS, combined with LC, is a technique able to play a key role in the evaluation of the environmental fate of pollutants and allows elucidation of the transformation pathways followed by the two drugs.

  • 出版日期2012-8-15