摘要

Pushbroom-style imaging systems exhibit several advantages over line scanners when used on space-borne platforms as they typically achieve higher signal-to-noise and reduce the need for moving parts. Pushbroom sensors contain thousands of detectors, each having a unique radiometric response, which will inevitably lead to streaking and banding in the raw data. To take full advantage of the potential exhibited by pushbroom sensors, a relative radiometric correction must be performed to eliminate pixel-to-pixel non-uniformities in the raw data. Side slither is an on-orbit calibration technique where a 90-degree yaw maneuver is performed over an invariant site to flatten the data. While this technique has been utilized with moderate success for the QuickBird satellite [1] and the RapidEye constellation [2], further analysis is required to enable its implementation for the Landsat 8 sensors, which have a 15-degree field-of-view and a 0.5% pixel-to-pixel uniformity requirement. This work uses the DIRSIG model to analyze the side slither maneuver as applicable to the Landsat sensor. A description of favorable sites, how to adjust the maneuver to compensate for the curvature of %26quot;linear%26quot; arrays, how to efficiently process the data, and an analysis to assess the quality of the side slither data, are presented.

  • 出版日期2014-11